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BACKGROUND

RESULTS

CONCLUSIONS

Diffusion MRI (dMRI) is an imaging technique that exploits 
the diffusion of water molecules to generate contrast in MR 
images. In pediatric brains, dMRI provides information 
relevant for brain development such as white matter 
microstructure. However, it is challenging for these 
populations to remain still, and motion artifacts can be 
present. Removing images with artifacts is a manual process, 
which is prone to subjective error and time-consuming due 
to the many imaging volumes acquired. In recent years, deep 
learning (DL) methods have shown great success with 
quality control (QC) tasks, such as classifying an image as 
artifactual or normal. In this work, we propose a three-
dimensional convolutional neural network (3D-CNN) 
capable of recognizing motion artifacts in dMRI images of 1-
and 24-month subjects.
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• Diffusion MRI (dMRI) techniques can produce thousands of 
images that must be manually inspected for artifacts such as 
motion

• Manual inspection is time-consuming and prone to subjective 
error

• Removing motion-compromised volumes is essential for 
pediatric subjects

• A convolutional neural network trained on 1- and 24-
month-old subjects can identify artifactual volumes with 
accuracies above 90% using the same scan protocol

A DL model for binary classification can be extended to 
motion artifact detection in diffusion MRI of pediatric 
subjects. A high accuracy of 95% was achieved for a dataset 
of images acquired at 1- and 24-months of age using the 
same protocol.

This model could not be applied to data from a new 
protocol with a different acquisition orientation. Preliminary 
results show that re-training the model with a cubic imaging 
volume and random reformatting can allow the model to 
learn artifact features independently of plane and subject 
orientation. These results are acceptable, but in future work 
will be improved and tested on more data from the new 
protocol. 

The proposed model could be used in a diffusion processing 
pipeline to save time and eliminate human subjectivity. 
Additionally, it could be implemented directly onto the 
scanner to let operators know to reacquire volumes when 
the subject has moved during acquisition.

Raw dMRI images were obtained from a prior study where 
subjects were imaged at 1-month (n=95) and 24-months 
(n=24) of age. Manual QC of the subjects’ 4D image volumes 
were performed by trained lab members and 3D sub-
volumes were flagged for motion artifacts. Image volumes 
were zero-padded or cropped to be of size 128x128x70, and 
pixel intensities were normalized between 0 and 1. A 50/50 
class balance was achieved by selecting an equal number of 
artifactual and normal volumes.

The labeled data were used to train a 3D-CNN consisting of 
five 3D convolutional layers of increasing filter size and ReLu 
activation. Each convolutional layer is followed by max-
pooling and batch normalization. The output from the last 
block is flattened, passed to a dense layer with 256 neurons, 
and then to a dropout layer to prevent overfitting. Finally, a 
dense layer of 1 neuron with sigmoid activation is used to 
perform binary classification. The model was trained for 20 
epochs and a 5-fold cross-validation method was used to 
evaluate sensitivity to the training data.

Model robustness to a second protocol was tested with data 
from an ongoing study with a different data acquisition 
orientation. The model was re-trained on the same training 
data, this time zero-padded to be of size 128x128x128 and 
randomly reformatted to shuffle the axes. The re-trained 
model was used to make predictions on images acquired 
with the second protocol.

METHODS

The labeled dataset used for this work 
contained 2013 and 263 volumes from 
1- and 24-month subjects, respectively. 
Training and validation were 
performed on 5 unique data splits, 
resulting in a mean accuracy of 
95±1.2%. Examples of image volumes 
from the same subject that were 
correctly identified as normal (top row) 
and artifactual (bottom row) are 
shown on the left. The accuracy results 
from the 5-fold cross validation are 
shown in the table below.

Fold # Accuracy

1 96.8%

2 95.3%

3 95.4%

4 93.5%

5 94.3%

Preliminary results with the model re-trained using 
reformatted data show a decrease in accuracy on the 
original dataset (93±1.8%) but acceptable accuracy 
(80±3.4%) on an example case from a new protocol with a 
different acquisition orientation. 
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