

BACKGROUND

- •Globally, ~225,000 children <15 years died from TB in 2019
- Given challenges in case finding, the large majority of children that die from TB are never even diagnosed
- Effective screening could **<u>enhance case finding</u>** to improve: Outcomes for individuals
- TB control in populations
- Screening that effectively rules out active TB could be leveraged to **expand access to TB preventive treatment**
- The WHO's End-TB strategy emphasizes systematic

screening of high-risk groups of children:

- TB close contacts
- Children living with HIV
- Children with wasting or edematous malnutrition
- Children with pneumonia

METHODS

Objective: Estimate accuracy of screening tests for pulmonary tuberculosis (TB) in high-risk groups of children and those accessing healthcare

Study Design: Systematic review & meta-analysis **Study Selection Criteria**:

- Cross-sectional and cohort studies
- >75% of children under 15 years of age
- Index tests done for screening rather than diagnosis
- Included index tests:
- symptom(s) screening,
- chest radiography (CXR), or
- Xpert MTB/RIF or Ultra
- Included reference standards:
- Composite—clinical or microbiologic diagnosis
- Microbiologic diagnosis

Data Collection and Analysis:

- At least two review authors—
- Independently selected studies for inclusion
- Independently extracted data
- Assessed study quality using QUADAS-2
- Consolidated symptom screens into groups that used similar combinations of symptoms
- Performed analyses separately by reference standard
- Estimated pooled sensitivity and specificity with 95% confidence intervals using a bivariate model
- Assessed certainty of evidence using GRADE

Screening for active TB in children: a systematic review

Bryan Vonasek^{1,2}, T Ness², Y Takwoingi³, AW Kay², SS van Wyk⁴, L Ouellette², BJ Marais⁵, KR Steingart⁶, AM Mandalakas²

¹UWSMPH, ²Baylor Coll. of Medicine, ³Univ. of Birmingham (UK), ⁴Stellenbosch Univ. (RSA), ⁵Univ. of Sydney (Australia), ⁶Liverpool School of Tropical Medicine (UK)

- Overall, there is a striking lack of quality evidence describing strategies to screen for TB in high-risk populations of children.
- Limited evidence demonstrates symptom screening & CXR may be useful in high-risk children (TB contacts & those living w/ HIV).

RESULTS

Flow Diagram of Study Selection

Summary of Findings for Selected Analyses

	Reference Standard	Studies	TB Preva- lence	Number of Children (TB cases)	Sensitivity (95% CI)	Specificity (95% CI)	
h, fever,	CRS	4	2% to 13%	2695 (113)	89% (52 to 98)	69% (51 to 83)	
h, <mark>fever,</mark> ness	CRS	3	2% to 13%	2445 (106)	64% to 76%*	37% to 77%*	
h, fever, TB four- ne at	CRS	2	3% and 8%	203,135 (1219)**	61% (58 to 64)	94% (86 to 98)	
	CRS	3	10% to 13%	1399 (162)	21% (11 to 38)	85% (71 to 93)	
	CRS	5	10% to 34%	1723 (233)	32% (18 to 50)	75% (56 to 88)	
	MRS	2	4% to 16%	561 (39)	48% to 67%*	62% to 72%*	
	CRS	8	2% to 25%	3513 (232)	87% (75 to 93)	99% (68 to 100)	
	CRS	4	2% to 13%	2550 (113)	84% (70 to 92)	91% (90 to 92)	
	CRS	3	2% to 13%	2388 (110)	87% (66 to 96)	89% (88 to 90)	
	MRS	1	1%	3540 (28)	86% (67 to 96)	56% (54 to 58)	
	MRS	2	1% and 4%	787 (16)	43% to 100%*	98% to 99%*	
	CRS	2	7% and 13%	787 (84)	9% to 19%*	100% to 100%*	

Abbreviations: CI: confidence interval; CRS: composite reference standard; CXR: chest radiography; ICF: WHO-recommended intensified case finding four-symptom screen; MRS:

- One or more of cough, fever, or poor weight gain in TB contacts had the highest sensitivity; though
- specificity was low
- The WHO four-symptom screen in children living w/ HIV had the highest specificity
- **<u>CXR</u>** screening against the composite reference standard had high accuracy, though there was strong concern for incorporation bias

- **<u>Xpert MTB/RIF</u>** demonstrated high specificity; estimation of sensitivity was limited by few cases
- children are lacking and urgently needed

ADDITIONAL RESULTS ing: selected forest plots ever, or poor weight gain, close TB contacts, composite Specificity (95% Cl nsitivity (95% CI) 0.69 [0.63, 0.75] 1.00 [0.84, 1.00] 0.76 [0.58, 0.89] 0.77 [0.71, 0.82] 0.40 [0.37, 0.42] 0.64 [0.50, 0.76] 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 : 0.77 [0.71, 0.82] 0.67 [0.41, 0.87] 0.37 [0.31, 0.44] 0.64 [0.50, 0.76] 0.40 [0.37, 0.42] .150 20 753 en, outpatients living with HIV, composite TN Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 0.61 [0.58, 0.64] 0.89 [0.89, 0.89 0.57 [0.18, 0.90] 0.97 [0.96, 0.98] elected forest plots FP FN TN High TB burden Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 1.00 [0.40, 1.00] 1.00 [0.98, 1.00] -0 1 224 0.95 [0.77, 1.00] 1.00 [0.98, 1.00] ----0 1 46 No 0.93 [0.68, 1.00] 1.00 [0.92, 1.00] ----36 2 98 Yes 0.90 [0.70, 0.99] 0.73 [0.65, 0.80] 303 7 117 0.89 [0.78, 0.95] 0.28 [0.24, 0.32] 0 6 219 0.82 [0.65, 0.93] 1.00 [0.98, 1.00] ____ 23 12 1559 Partially 0.78 [0.64, 0.88] 0.87 [0.86, 0.89] 57 10 187 Yes 0.52 [0.30, 0.74] 0.77 [0.71, 0.82] ospitalised with pneumonia, microbiological FN TN High TB burden Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Majority 0.86 [0.67, 0.96] 0.56 [0.54, 0.58] nt or outpatient, microbiologica FN TN High TB burden Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 0 297 No 1.00 [0.16, 1.00] 1.00 [0.98, 1.00] No 0.43 [0.18, 0.71] 0.99 [0.97, 1.00] 8 467 nt or outpatient, composite FN TN High TB burden Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI) 50 425 No 0.19 [0.10, 0.31] 1.00 [0.99, 1.00] No 0.09 [0.01, 0.29] 1.00 [0.98, 1.00] 20 277 Patient Selection Index Te Flow and Timing 75% 100% 50% 75% 100% 0% 25% 50% '0% 25% Applicability Concerns **Risk of Bias** 📃 Unclear Low 📕 High

Symptom Sci	reeni
One or more of	cough
Study	ТР
Birungi 2018	4
Triasih 2015a	21
Kruk 2008	25
Schwoebel 2020	35
One or more of	cough
Study	ТР
Kruk 2008	25
Aggerbeck 2018	12
Schwoebel 2020	
WHO four-symp	tom s
Study	ТР
Vonasek 2021	742
Sawry 2018	4
CXR Screenir	ng: se

Study	23	ΓР	- 1
Birungi 2018		4	
Clemente 2013	7 2	21	
Dreesman 201	7 3	14	
Tieu 2014		19	Ξ
Togun 2016	5	55	30
Kruk 2008	2	27	
Schwoebel 202	20 4	42	22
Triasih 2015b	1	11	5
CXR abnorma	l, <5	y/0	o he
Study	ТР		FP
PERCH 2019	24	15	47

Xpert MTB/RIF Screening: selected forest plots Summary of risk of bias and applicability concerns as assessed using QUADAS-2. Reference Standar

Xpert MTB/RIF, i	npat	ien
Study	ТР	FP
LaCourse 2014	2	1
Togun 2015	б	6
Xpert MTB/RIF, i	npat	ient
Study	ТР	FP
Togun 2015	12	0
LaCourse 2014	2	1

whealth

American Family Children's Hospital

Department of Pediatrics JNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH

CONCLUSIONS

Symptom screens:

• Accurate and feasible screening tests for active TB in