BACKGROUND

- Relapsed pediatric sarcomas have a poor prognosis with no available curative options.
- Alpha-Tocopheryloxyacetic acid (a-TEA) is a redox-silent analog of alpha-tocopherol that induces apoptotic and immunogenic cell death of tumor cells.
- In a first-in-human clinical trial, a-TEA was well tolerated in adults with advanced solid tumors (NCT02192346) but has not yet been studied in pediatric sarcoma.
- We used a murine model of rhabdomyosarcoma (M3-9-M RMS) to assess the in vivo and in vitro anti-tumor effects of a-TEA.

METHODS

- Mice were randomized to a control diet or a TEA enriched diet for 3 weeks. Spleens were then randomized to receive a control diet or an a-TEA enriched diet for 3 weeks. Spleens were analyzed at the end of treatment.
- Increased levels of Arg1+ PD-L1+ myeloid cells were also seen.
- RNA-seq analysis of tumors from treated and control groups showed gene expression changes in EP300, c-Jun, and CXCR4.

RESULTS

- a-TEA, Alpha-Tocopheryloxyacetic acid (a-TEA), is a redox-silent analog of alpha-tocopherol that induces apoptotic and immunogenic cell death of tumor cells.
- a-TEA mediates apoptosis of RMS in vitro and suppresses in vivo tumor growth, leading to prolonged survival.
- Spleens from a-TEA treated mice showed increased levels of IFN-gamma+, CD4+ T cells, and decreased levels of Arg1+ and PD-L1+ myeloid cells.

CONCLUSIONS

- a-TEA mediates apoptosis of RMS in vitro and suppresses in vivo tumor growth, leading to prolonged survival.
- Potential mechanisms may include direct apoptosis of RMS versus enhanced activation of adaptive immunity through IFN-gamma+ production by CD4+ T cells and/or suppression of Arg1+ PD-L1+ myeloid cells.
- a-TEA may have direct effects on tumor cell proliferation through EP300 and c-Jun as well as indirect effects by immune cell recruitment through CXCR4 expression.

ADDITIONAL KEY INFORMATION

The study was supported by NIH TL1 TR002375 (FS), St. Baldrick’s Stand up to Cancer (SU2C) Pediatric Dream Team Translational Research Grant SU2C- AACR-DT-27-17, NIH/NCI R01 CA215461, American Cancer Society Research Scholar Grant RSG-18-104-01-LIB, and the Midwest Athletes Against Childhood Cancer (MACC) Fund (CMC). SU2C is a division of the Entertainment Industry Foundation. Research grants are administered by the American Association for Cancer Research, the scientific partner of SU2C. The contents of this article do not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US government.