

Modifying 170HP screening cutoffs for improved detection of 210HD deficiency Preet K Matharu MD¹, Patrice K Held PhD¹, David B Allen MD¹

BACKGROUND

- Congenital adrenal hyperplasia is a group of autosomal recessive disorders with most cases associated with 21 hydroxylase deficiency (210HD)
- Newborn screening for 210HD is a twotiered approach; first-tier immunoassay for quantification of 17-hydroxyprogesterone (170HP) followed by second-tier mass spectrometry steroid profile analysis
- Data varies regarding which co-variates to use for establishing 170HP cutoff levels when screening for 210HD

METHODS

Objective:

To improve screening specificity for 210HD by modifying 170HP cutoff levels based on both collection time and birth weight.

Design:

- Retrospective assessment of de-identified screening results from newborns collected from January-December 2019
- Mean/median values from data used to delineate sub-categories within co-variates of collection time (CT) and birth weight (BW)
- 95th and 99th percentiles calculated based on 170HP levels for CT and BW
- Percentiles used as cutoffs and applied to a cohort of confirmed cases

¹University of Wisconsin – Madison School of Medicine and Public Health, Department of Pediatrics

Figure 2. Application of modified 95th and 99th percentile 17OHP cutoffs to confirmed cases

CONCLUSIONS

Both BW and CT are found to impact 170HP

 Application of modified first-tier 170HP cutoffs as the 99th percentile based on CT and BW correctly identified all confirmed

 Utilization of the 95th percentile identified two additional, previously missed cases of

NEXT STEPS

 Determine number of samples referred for second-tier testing based on proposed cutoff

• Compare false positive rates based on current and proposed 170HP cutoff levels

Evaluate the impact of other co-variates such as gestational age on 170HP levels

REFERENCES

• Antal Z, Zhou P. Congenital adrenal hyperplasia: diagnosis, evaluation and management. Pediatr Rev 2009; e49-e57.

• Allen DB, Hoffman GL, Fitzpatrick P, Laessig R, Maby S, Slyper A. Improved precision of newborn screening for congenital adrenal hyperplasia using weight-adjusted criteria for 17-hydroxyprogesterone levels. J Pediatr 1997; 130: 128-33.

• Olgemöller B, Roscher AA, Liebl B, Fingerhut R. Screening for congenital adrenal hyperplasia: adjustment of 17-hydroxyprogesterone cut-off values to both age and birth weight markedly improves the predictive value. J Clin Endocr Metab 2003; 88:

• van der Kamp HJ, Oudshoorn CGM, Elvers BH, van Baarle M, Otten BJ, Wit JM, Verkerk PH. Cutoff levels of $17-\alpha$ -hydroxyprogesterone in neonatal screening for congenital adrenal hyperplasia should be based on gestational age rather than on birth weight. J Clin Endocr Metab 2005; 90: 3904-07.

 Hayashi GY, Carvalho DF, de Miranda MC, Faure C, Vallejos C, Brito VN, Rodrigues A, Madureira G, Mendonca BB, Bachega T. Neonatal 17-hydroxyprogesterone levels adjusted according to age at sample collection and birthweight improve the efficacy of congenital adrenal hyperplasia newborn screening. Clin Endocrinol 2017; 86: 480-87.