BACKGROUND

- Prenatal Zika virus (ZIKV) exposure negatively impacts brain development
- Childhood developmental deficits
 - Early intervention is crucial
 - Therapies known to maximize function

Hypothesis: Brain abnormalities in infancy predate developmental deficits in childhood.

METHODS

- n = 18 pregnant rhesus macaques
 - 11/18 inoculated with Zika virus
 - 7/18 macaques inoculated to a saline as controls.
- Inoculation around gestational day 30 or 45
- Infants delivered via cesarean section at term.
- MRI scans completed at 3 months of age
- Volumes for 21 brain regions (left, right, total)

RESULTS

Significant differences were found in cortical brain structures involved in **motor function** in ZIKV exposed infants compared with control.

These differences indicate a possible early predictor for developmental deficits in infants.

CONCLUSIONS

Differences in subcortical, prefrontal, frontal, and putamen volumes indicate a possible early predictor for developmental deficits (specifically motor deficits) in infants.

ADDITIONAL KEY INFORMATION

- Developmental outcomes will be defined up to 3 years of age
 - Compared to brain region volumes
 - Structural MRI in future

Acknowledgements:

Dr. Emma Mohr, Mohr lab

Contact: Lauren Hlubek

hlubek@wisc.edu