

Side-Chain Polarity of Amino Acids within the Kir7.1 **Channel Pore Lining Determine Permeability and Function**

Introduction

- Homotetrameric protein
- Maintains membrane potential
- Kir7.1 is present in the kidney, intestine, uterus, and the retina

- Mutations in *KCNJ13* gene (Kir7.1) lead to blindness
- Hypothesis: A single amino acid change hydrophilic Threonine to a from а hydrophobic Isoleucine will structurally alter the channel pore and therefore alter function.

Kharade et al. 2017 and Denton and Kharade 2017

Methods

- Mass Spec: UW-Biotechnology Center utilized LC/MS with Trypsin/GluC and Mascot analysis.
- Transfection: HEK293 cells in culture were transfected with GFP wildtype (WT) Kir7.1, T153I, T153G, T153A, T153L, T153C, or T153S plasmid DNA.
- Imaging: Nikon-C2 confocal system, Live-cell mapped GFP fused protein. Hoescht stain for nucleus and WGA-Alexa 594 for membrane were utilized.
- Electrophysiology: Extracellular Ringer's or Rb+ determined channel function. Extracellular K+gradient determined chord conductance. Data analyzed using the Clampfit program.
- Bioinformatics: MPex and Protean 3D were utilized for hydrophobicity and pore structure respectively.

Kir7.1 WT

Katie M. Beverley, Pawan K. Shahi, and Bikash R. Pattnaik University of Wisconsin – Madison School of Medicine and Public Health, Department of Pediatrics

Translation and Localization of k							
Analysis Type	Kir7.1 % Match	Kir7.1 Quality Score	T153I % Match	T153I Quality Score			
Mascot GFP Kir Trypsin/ GluC	42%	1137	34%	1958	Inorescence (ah)		

 T153I lacks chord conductance • T153I does not display concentration dependent depolarization

Kir Channel	Slope (mV/mM K)			
Kir7.1 WT	0.6066			
T153I	-0.0044			

American Family Children's Hospital

Department of Pediatrics

SCHOOL OF MEDICINE AND PUBLIC HEALTH

Hydrophobicity and Pore Size Analysis

• Polarity and pore size play a role in Kir7.1 K⁺ permeability • A polar side chain at aa position 153 is required for Kir7.1

dius near indicative	Channel	Pore Size	Radius (d)
n	WT	124.29A° ²	3.145(6.29) A°
hies TTM Free Energies 19	T153I	113.85A° ²	3.01 (6.02) A°
	T153C	127.08A° ²	3.18 (6.36) A°
	T153S	126.28A° ²	3.17 (6.34) A°
	T153L	56.21A° ²	2.115 (4.23) A°
	T153G	403.28A° ²	5.665 (11.33) A°
S L G A	T153A	237.24A° ²	4.345 (8.69) A°

Main Finding

- T153 is within the inner pore.
- T153I produces a full-length protein
- product which localizes to the
- membrane.
- Channel function is altered by a single aa change at position 153.
- **Bioinformatics show that single aa**
- changes alter hydrophobicity and pore
- region structure both contributing to functional alterations.
- Taken together this study supports the
- importance of the inner pore region for
- the permeability of the Kir7.1 channel.

Acknowledgments

• We appreciate the support from all members of the Pattnaik lab on this project.

• Funding: NEI R24EY032434, R01EY024995

• ERP T32, Ophthalmology core

Endocrinology & Reproductive Physiology Program UNIVERSITY OF WISCONSIN

