

Inflammatory and Iron-Related Indices Relate to Neonatal White Matter Microstructure

Douglas C. Dean III^{1,2,3}, Elizabeth M. Planalp^{3,4}, Jason F. Moody², H. Hill Goldsmith^{3,4}, Christopher L. Coe^{3,4}, Richard J. Davidson^{3,4,5,6}, Pamela J. Kling¹ ¹Pediatrics, ²Medical Physics, ³Waisman Center, ⁴Psychology, ⁵Center for Healthy Minds, ⁶Psychiatry University of Wisconsin – Madison

BACKGROUND

- Iron endowment is critical for healthy development, while iron deficiency at birth is linked to a proinflammatory propensity^{1,2}
- White matter (WM), essential for brain connectivity, is sensitive to adverse environments, which can have long-lasting effects on development^{3,4}.
- However, molecular mechanisms underlying infant behavior and brain development are not understood.
- **Objective:** To examine associations between iron-mediated inflammatory pathways and WM microstructure in 1-month old infants.

METHODS

- Women enrolled during second trimester of pregnancy.
- Cord blood (CB) specimens collected at birth and plasma was separated by centrifugation on average 12 hours after collection.
- Assays of CB plasma performed to measure iron indices (e.g., ferritin and hepcidin) and cytokines (i.e., IL-6, IL-8, IL-10, tumor necrosis factor- α [TNF- α]).
- Multi-modal MRI was acquired at 1-month of age during non-sedated sleep.
 - Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion and Density (NODDI) characterized WM microstructure⁵.
- A total of 47 participants with both CB measures and DTI/NODDI data.
- Statistical Analyses:
- Non-parametric permutation tests examined associations between iron/cytokine levels and DTI/NODDI measures
- Measures controlled for corrected gestational age, sex, and head motion.

- Voxelwise analyses revealed correlations across early developing white matter regions.
- Figure 1 provides representative sagittal and coronal views of white matter correlations. Areas of red-yellow denote regions of marginal significance (p<0.15, FWE-corrected).
- Ferritin levels negatively associated with Orientation Dispersion Index (ODI; p<0.05, uncorrected; Fig. 1a) and the intracellular volume fraction (FICVF; p<0.05, uncorrected; Fig. 1A). Regions associated with ferritin included the cerebellum, pons, and brain stem.
- IL-6 was negatively related to indices of WM, including fractional anisotropy (FA), diffusivity, and orientation dispersion (p<0.05, uncorrected; Fig. 1B). Regions included cerebellar WM, brain stem and corpus callosum.
- Negative correlations between IL-10 and ODI were also observed in the body of the corpus callosum and brain stem (p < 0.05, uncorrected; Fig. 1C).

- infants.

ADDITIONAL KEY INFORMATION

Acknowledgements

We thank all of the families that participated in this research study.

This work was supported by these National Institutes of Mental grants: P50 MH100031 (RJD, Center Director), R01 MH101504 (HHG, PI), and R00 MH110596 (DCD, PI).

Infrastructure support was also provided, in part, by a core grant to the Waisman Center from the National Institute of Child Health and Human Development (U54 HD090256).

References

¹Weigert R, et al., Iron status at birth is associated with eosinophilia in infancy. J Perinatol 2015:35:621-626. ²Dosch NC, et al., Maternal obesity affects inflammatory and iron indices in umbilical cord blood. J Pediatr 2016: 172;20-8. ³Dubois, J., et al., 2014. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48-71. ⁴Lebel, C., Deoni, S., 2018. The development of brain white matter microstructure. Neuroimage 182, 207-218.⁵Dean, D.C., 3rd, et al, 2017. Mapping White Matter Microstructure in the One Month Human Brain. Sci Rep 7, 9759.

Author Contact Information Doug Dean

Email: deaniii@wisc.edu Office: Waisman Center, T135 Phone: 608-262-6706

Jwhealth

American Family Children's Hospital

Department of Pediatrics JNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH

CONCLUSIONS

Findings link levels of CB inflammatory cytokines and iron stores at delivery to WM maturation in several brain regions including cerebellum and corpus callosum.

• Results did not survive correction for multiple comparisons, but potentially offer insights into associations between iron-mediated inflammatory pathways and WM development.

Future analyses will test the strength of associations between cytokine and iron biology and WM maturation in a larger sample of